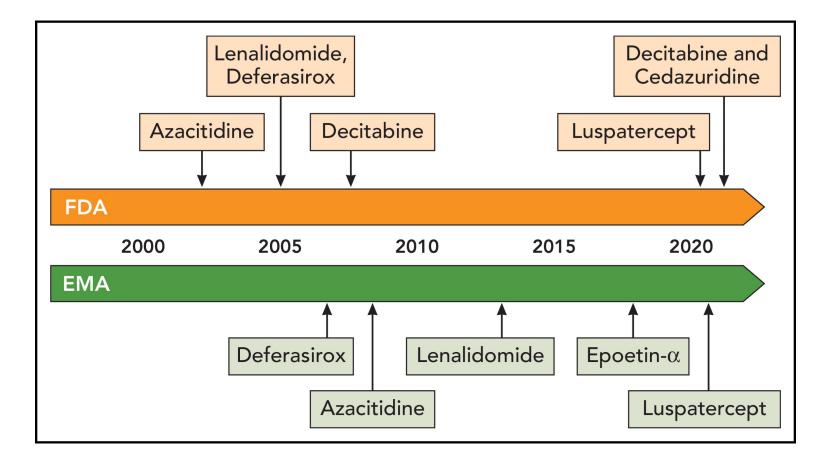
Targeted therapy in low-risk MDS

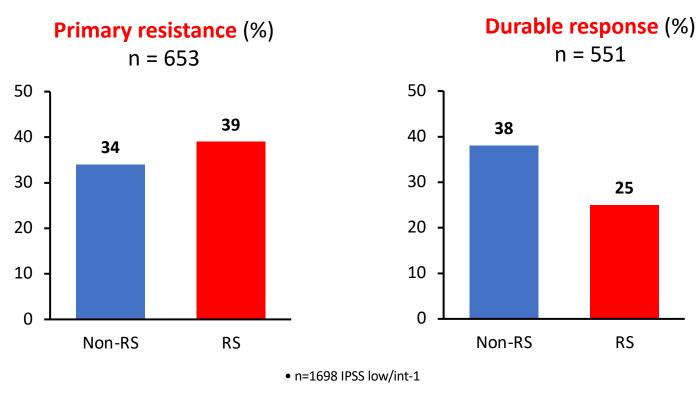
Uwe Platzbecker Medical Clinic and Policlinic 1 Hematology and Cellular Therapy University Hospital Leipzig, Germany

Disclosures

	No, nothing to disclose
Х	Yes, please specify:

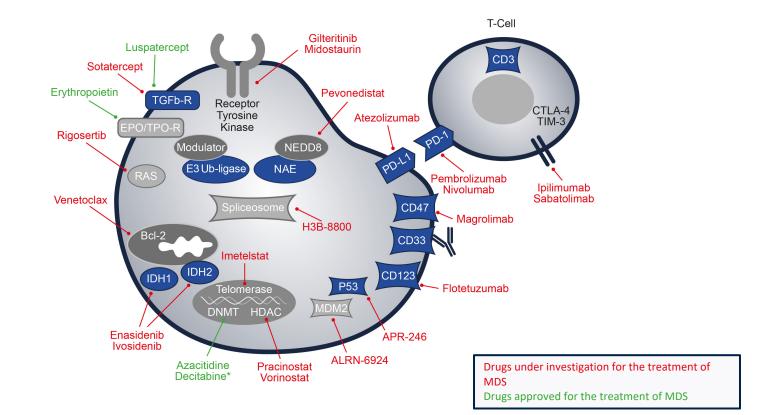

Company Name	Honoraria/ Expenses	Consulting/ Advisory Board	Funded Research	Royalties/ Patent	Stock Options	Ownership/ Equity Position	Employee	Other (please specify)
Celgene/BMS	x	Х	x					
Novartis	x		x					
Curis			х					
Jazz	x		x					
Amgen			x					

Off-Label Product Use


Will you be presenting or referencing off-label or investigational use of a therapeutic product?

x Yes (but this will be highlighted)

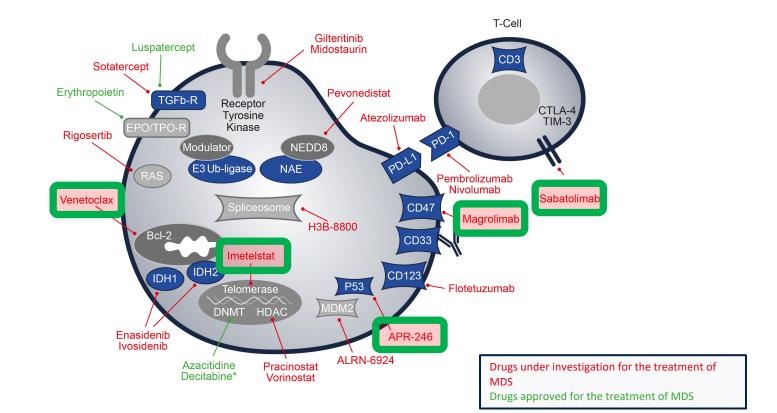
Do we need novel therapies in MDS?



Response to erythropoiesis-stimulating agents (ESA) and ring sideroblasts

• ORR 61.5% median 17 m

Current and future treatment options for patients with MDS

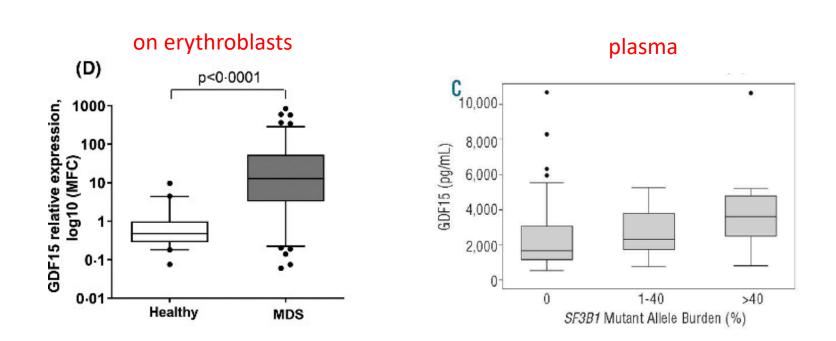

*Only approved for the

treatment of MDS in the US and Canada

Bcl, B-cell lymphoma; CD, cluster of differentiation; CTLA, cytotoxic T-lymphocyte antigen; DNMT, DNA methyl transferase; EPO, erythropoietin; HDAC, histone deacetylase; IDH, isocitrate dehydrogenase; MDM, Mouse double minute; MDS, myelodysplastic syndromes; NAE, NEDD8 activating enzyme; NEDD8, neural precursor cell expressed developmentally downregulated protein; PD, programmed cell death; PD-L, programmed cell death-ligand; TGFb-R, transforming growth factor betareceptor; TIM, T cell immunoglobulin and mucin domain-containing protein; TPO-R, thrombopoietin receptor Ad

adapted from Platzbecker U. Blood 2019

Current and future treatment options for patients with MDS

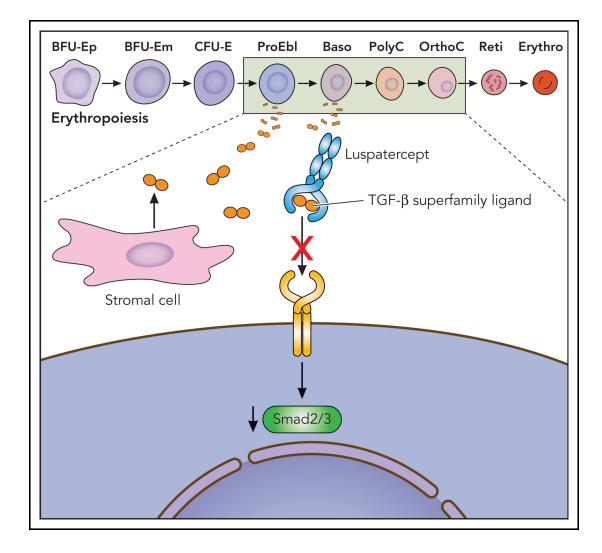


*Only approved for the


treatment of MDS in the US and Canada

Bcl, B-cell lymphoma; CD, cluster of differentiation; CTLA, cytotoxic T-lymphocyte antigen; DNMT, DNA methyl transferase; EPO, erythropoietin; HDAC, histone deacetylase; IDH, isocitrate dehydrogenase; MDM, Mouse double minute; MDS, myelodysplastic syndromes; NAE, NEDD8 activating enzyme; NEDD8, neural precursor cell expressed developmentally downregulated protein; PD, programmed cell death; PD-L, programmed cell death-ligand; TGFb-R, transforming growth factor betareceptor; TIM, T cell immunoglobulin and mucin domain-containing protein; TPO-R, thrombopoietin receptor Ad

GDF-15 in MDS

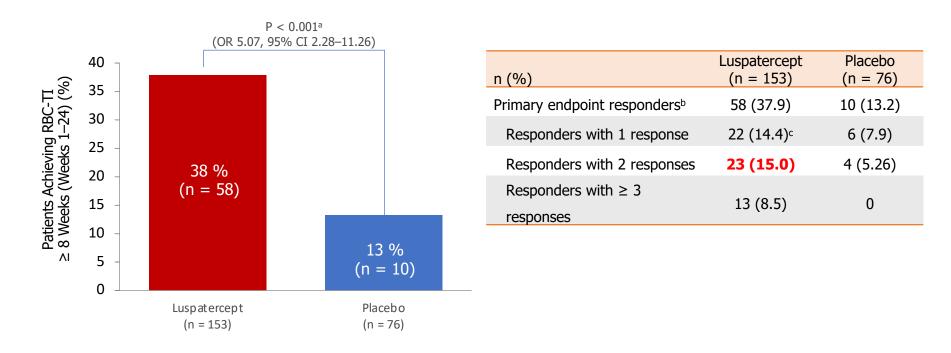


TGF- β and SMAD2/7 in MDS

- *SMAD7*, a negative regulator of TGF-β receptor-I kinase, is markedly reduced in MDS, and leads to ineffective haematopoiesis
- Increased levels of microRNA-21 are seen in MDS and reduce SMAD7 levels, thus overactivating TGF-β signalling

Ligand-trap to modulate ineffective hematopoiesis

Luspatercept development

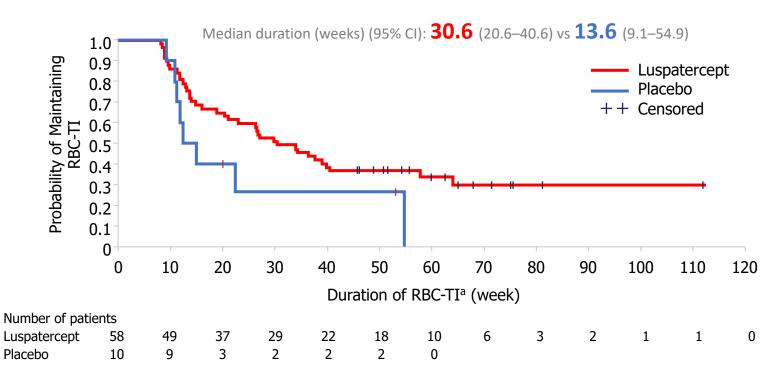


PACE Trial Response by Subgroup

n/N (%)	IWG HI-E ^a	RBC-TI [♭]
All patients	32/51 (63)	16/42 (38)
Transfusion burden		
LTB (< 4 RBC units/8 weeks)	11/17 (65)	6/8 (75)
HTB (\geq 4 RBC units/8 weeks)	21/34 (62)	10/34 (29)
Prior use of ESAs		
Yes	21/34 (62)	11/29 (38)
No	11/17 (65)	5/13 (39)
Prior use of lenalidomide		
Yes	5/8 (63)	1/8 (13)
No	27/43 (63)	15/34 (44)
Serum erythropoietin level		
< 200 IU/L	19/25 (76)	10/19 (53)
≥ 200 to ≤ 500 IU/L	7/12 (58)	4/9 (44)
> 500 IU/L	6/14 (43)	2/14 (14)
RS status		
Positive (\geq 15% RS)	29/42 (69)	14/33 (42)
Negative (< 15% RS)	3/7 (43)	2/7 (29)
Unknown	0/2	0/2

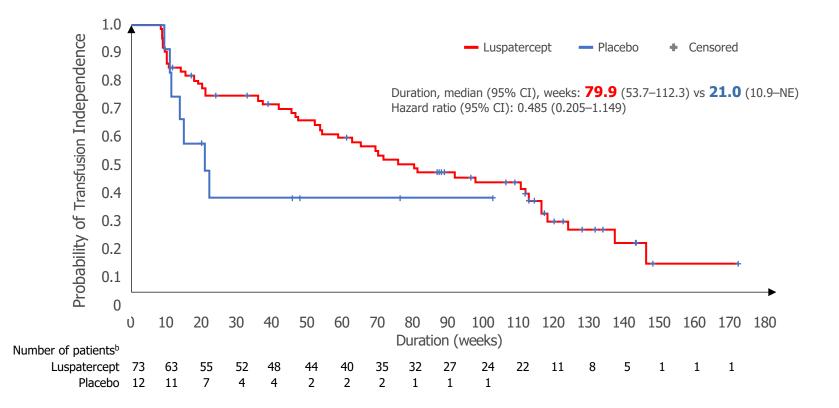
^a For LTB patients, IWG HI-E is defined as \geq 1.5 g/dL Hb increase over 8 weeks; for HTB patients, IWG HI-E is defined as a reduction of \geq 4 RBC units over 8 weeks; ^b Patients with a baseline transfusion burden of \geq 2 RBC units/8 weeks were included in the RBC-TI evaluable population. Platzbecker et al., Lancet Oncol 2017. DOI: http://dx.doi.org/10.1016/S1470-2045(17)30615-0.

MEDALIST Trial RBC-TI Response by Primary Endpoint



Response rates were similar regardless of SF3B1 allelic burden and total number of baseline somatic mutations.

^a Determined using a Cochran–Mantel–Haenszel test stratified for average baseline RBC transfusion requirement (\geq 6 vs. < 6 units/8 weeks) and baseline IPSS-R score (Very low or Low vs. Intermediate). ^b Defined as the absence of any red blood cell transfusion during any consecutive 56-day period during weeks 1–24. ^c Eleven patients were transfusion-free during the entire post-treatment period.


MEDALIST Trial

Duration of RBC-TI Response in Primary Endpoint Responders

^a During indicated treatment period. Patients who maintained RBC-TI at the time of analysis are censored.

MEDALIST Trial Cumulative Duration of RBC-TI Response

a Cumulative duration of RBC-TI \geq 8 weeks is defined as the sum of all durations of RBC-TI for patients achieving RBC-TI \geq 8 weeks during the entire treatment phase. ^b In the intent-to-treat population; patients who maintained response were censored from the analysis.

MEDALIST Trial Safety

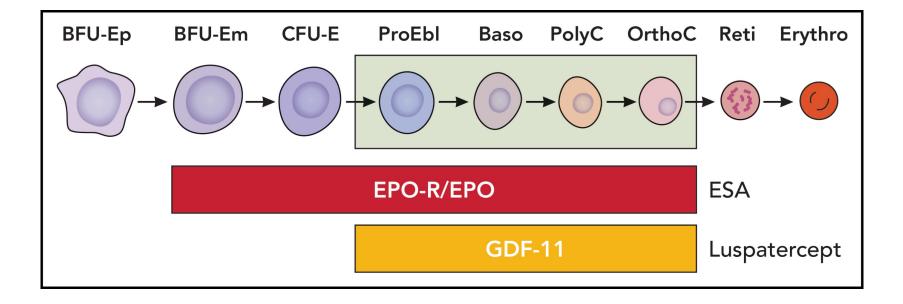
All Grade TEAE (\geq 10 % Incidence in Either Treatment Arm), n (%)	Luspatercept (n = 153)	Placebo $(n = 76)$
Fatigue	41 (27)	10 (13)
Asthenia	31 (20)	9 (12)
Edema peripheral	25 (16)	13 (17)
Diarrhea	34 (22)	7 (9)
Nauseaª	31 (20)	6 (8)
Constipation	17 (11)	7 (9)
Dizziness	30 (20)	4 (5)
Headache	24 (16)	5 (7)
Back pain ^a	29 (19)	5 (7)
Arthralgia	8 (5)	9 (12)
Dyspnea ^a	23 (15)	5 (7)
Cough	27 (18)	10 (13)
Bronchitis ^a	17 (11)	1 (1)
Urinary tract infection ^a	17 (11)	4 (5)
Fall	15 (10)	9 (12)

Incidence of TEAEs in patient receiving luspatercept generally decreased over time.

 $a \ge 1$ event was reported as serious.

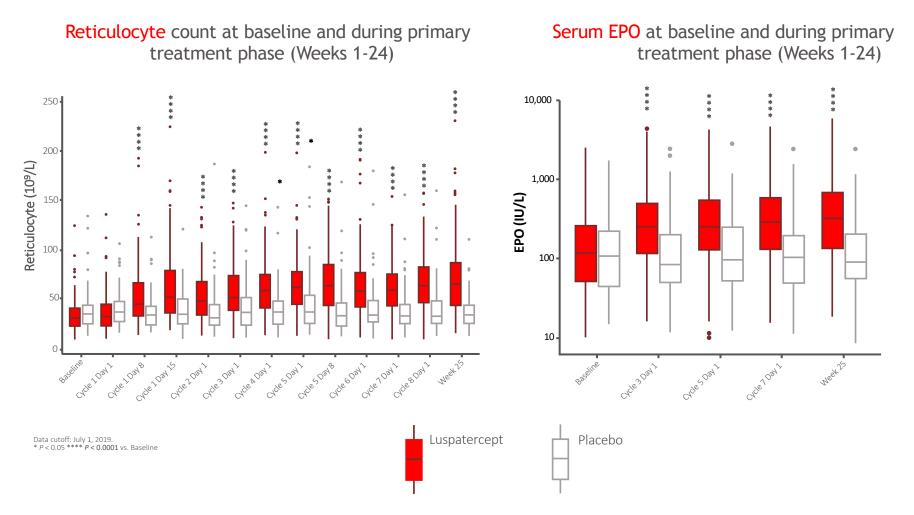
15

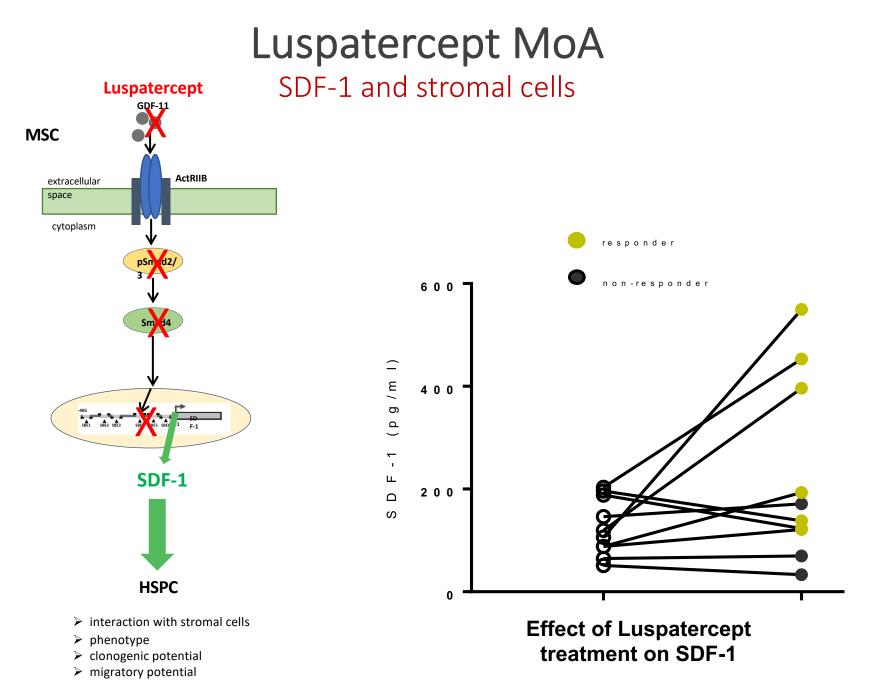
MEDALIST Trial Response by Subgroup


Baseline erythroid biomarkers by clinical benefit (CB) response

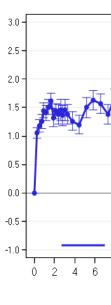
Biomarker	Luspatercept (N = 153)				
Diomarker	CB (n = 89)	No CB (n = 64)	P value		
Transfusion burden, ^a mean (SD), RBC units	n = 89 10.404 (5.96)	n = 64 11.906 (4.74)	0.08520		
Hemoglobin, mean (SD), g/L	n = 83 89.78 (9.78)	n = 62 87.59 (11.70)	0.23526		
Serum EPO, mean (SD), IU/L	n = 85 184.24 (252.44)	n = 64 248.92 (262.97)	0.13297		
≤ 100	n = 47 58.70 (24.04)	n = 18 51.93 (30.94)	0.41029		
> 100 to ≤ 200	n = 18 144.15 (24.18)	n = 21 141.01 (22.62)	0.68019		
> 200	n = 20 515.35 (352.01)	n = 25 481.39 (291.27)	0.73074		
BM EP, mean (SD), %	n = 87 31.31 (14.35)	n = 63 26.53 (12.22)	0.02975		
Serum ERFE, mean (SD), ng/mL	n = 80 21.36 (12.26)	n = 57 20.22 (8.62)	0.52414		
Serum sTfR1, mean (SD), nM	n = 82 31.45 (18.81)	n = 61 31.79 (18.57)	0.59966		
Reticulocyte count, mean (SD), ×10 ⁹ /L	n = 75 36.75 (19.14)	n = 60 31.65 (13.30)	0.07091		

Data cutoff: July 1, 2019. ^aTransfusion burden during the 16 weeks prior to randomization.


EP, erythroid precursor; ERFE, erythroferrone; SD, standard deviation; sTfR1, soluble transferrin receptor-1.


Ligand-trap to modulate ineffective hematopoiesis

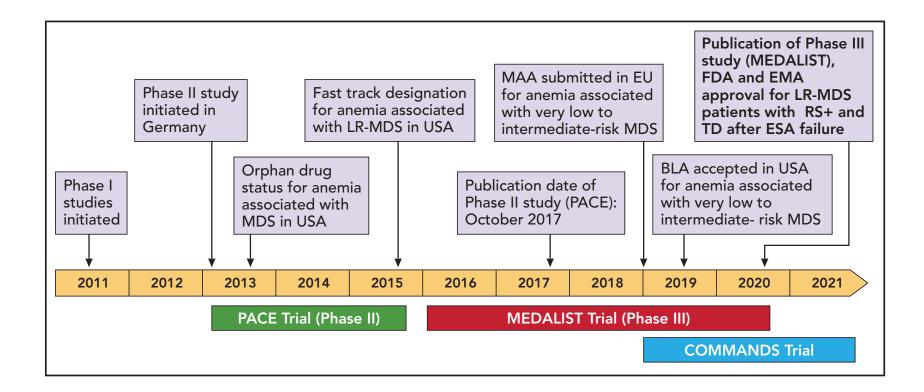
Kubasch, Fenaux, Platzbecker. Blood Adv 2021


MEDALIST Trial Retics and EPO levels

PACE Trial LUSP in RS+ and RS-

	IWG HI-E, n/N (%)	RBC-TI, n/N (%)
Response Rates	(N=108)	(N=73)
All patients	58/108 (54%)	32/73 (44%)
ESA exposure		
ESA-naïve	33/61 (54%)	20/37 (54%)
Prior ESA	25/47 (53%)	12/36 (33%)
RS status*		
RS+	42/62 (68%)	22/42 (52%)
Non-RS	16/44 (36%)	10/29 (35%)
Baseline EPO		
< 200 IU/L	39/58 (67%)	21/35 (60%)
200-500 IU/L	13/25 (52%)	8/16 (50%)
> 500 IU/L	6/25 (24%)	3/22 (14%)
Transfusion burden		
< 4U RBC/8 weeks	34/63 (54%)	20/28 (71%)
≥ 4U RBC/8 weeks	24/45 (53%)	12/45 (27%)

63 56 57 46


*2 patients with unknown RS status

Patients treated at dose levels ≥0.75 mg/kg

IWG HI-E evaluable: all patients

RBC-TI evaluable: ≥2U/8 wks of RBC transfused at baseline

Luspatercept development

HMA in early LR-MDS

3d DAC vs. 3d AZA q4w

- N=113
- 85% INT by IPSS-R
- 19% ESA pre-treatment
- Median time from diagnosis: 5 weeks
- HI: 18%
- Median response duration: 18 months

HMA in late LR-MDS

Oral AZA vs. PBO

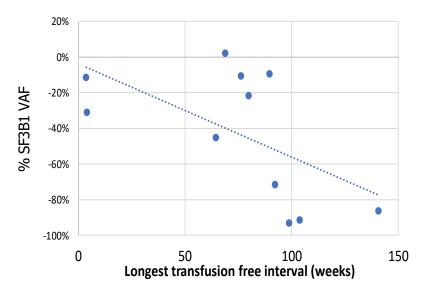
- IPSS int-1
- RBC-TI: **31%** vs. **11%** of patients, (*P*=0.0002)
- median durations of **11.1** and **5.0** months
- Platelet response: **24.3%** *vs.* **6.5%**

Imetelstat Trial in ESA Failure MDS Response

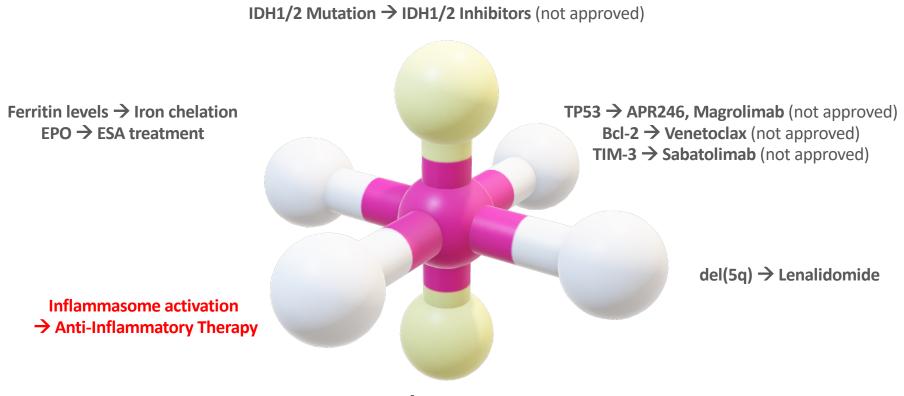
Parameters	N = 38
8-week TI, n (%)	16 (42)
Time to onset of 8-week TI, weeks, median (range)	8.3 (0.1-40.7)
Duration of TI, weeks, median (95% CI) ^a	88.0 (23.1 – 140.9*)
Cumulative duration of TI ≥ 8 weeks ^b , median (95% CI) ^a	92.3 (42.9, 140.9)
Hb rise ≥ 3.0 g/dL during TI ^c , n (%)	12 (32)
24-week TI, n (%)	12 <mark>(32)</mark>
Hb rise ≥ 3.0 g/dL during TI ^c , n (%)	11 (29)
1-year TI, n (%)	11 <mark>(29)</mark>

^a Kaplan Meier method; ^b Cumulative Duration of TI \geq 8 weeks is defined as the sum of all periods of TI \geq 8 weeks during the treatment; ^c Maximum Hb rise of \geq 3g/dL from pretreatment level (pretreatment level defined as mean Hb / 8 weeks). CI, confidence interval; Hb, hemoglobin

*Longest TI > 2.7 years

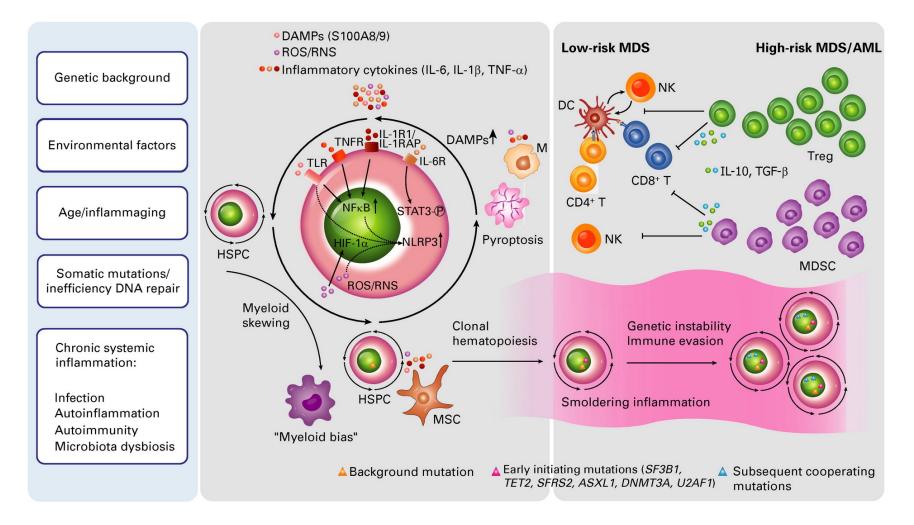

Imetelstat Trial in ESA Failure MDS On target effects

60% # 088-K700E 086-H662Q 50% # 006-E622D % SF3B1 VAF # 095-R625C 40% # 093-R625L 30% # 102-K700E 080-K700E 20% 079-K666R # 081-R625C 10% 078-K700E # 083-K700E 0% Baseline Post-imetelstat

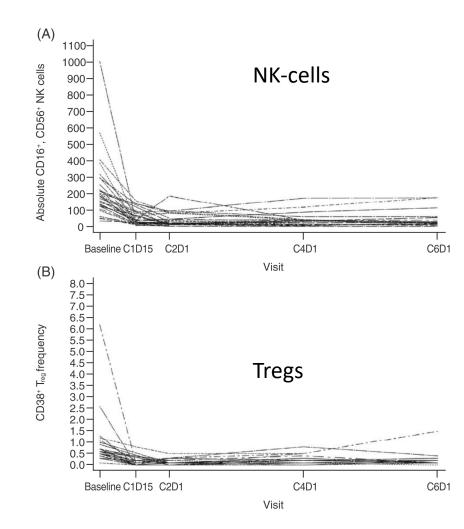

Reduction of SF3B1 VAF with Imetelstat treatment

A.

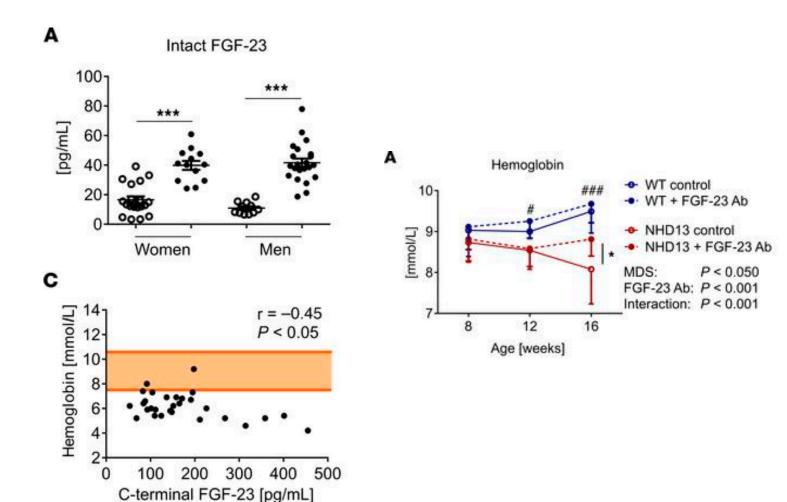
B. Reduction of SF3B1 VAF vs the longest TI duration

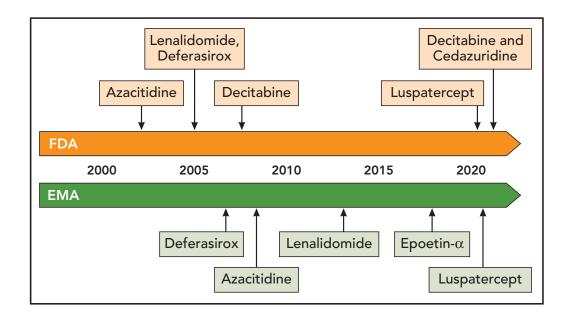


Treatment Stratification 4.0 – On the way to precision medicine?



RS+ → Luspatercept Spliceosome mutation → spliceosome modulators (not approved)


The "Immunome" in MDS: Culprit and Target or Bystander ?


Daratumomab in LR-MDS

Increased FGF-23 levels are linked to ineffective erythropoiesis and impaired bone mineralization in myelodysplastic syndromes

Summary

- Era of "targeted" therapy in LR-MDS is about to start
- Luspatercept effective in RS-MDS
- "Late 1st line" studies are ongoing in RS-/RS+
- Novel approaches: Imetelstat, anti-inflammatory agents

